CHEMISTRY ANSWER KEY

SSLC Exam 2025

1. Which of the given compounds is a mineral of Aluminium?

Answer: Cryolite

2. Which polymer is formed from isoprene?

Answer: Natural rubber (or Polyisoprene)

- 3. Find the total number of atoms in 2 GMM water (H₂O). Answer:
 - o 1 molecule of H₂O contains 3 atoms (2 Hydrogen + 1 Oxygen)
 - $_{\odot}$ 2 GMM = 2 × 6.022 × 10²³ molecules = 1.2044 × 10²⁴ molecules
 - \circ Total atoms = 1.2044 × 10²⁴ × 3 = **3.6132** × **10²⁴** atoms
- 4. Which is the product obtained when SO₃ gas is dissolved in concentrated sulphuric acid?

Answer: Oleum

5. Many of the metals in _____ block are used as catalysts in petroleum industry.

Answer: d-block

6. Classify the following compounds into alkanes, alkenes and alkynes:

Compounds: C₂H₄, C₅H₁₂, C₃H₈, C₇H₁₂

Answer:

- Alkanes: C₅H₁₂ (Pentane), C₃H₈ (Propane)
- Alkenes: C₂H₄ (Ethene)

• **Alkynes:** C₇H₁₂ (Heptyne)

7. Two gases Oxygen and Nitrogen at STP are given:

(a) Calculate the number of molecules in 64 g of Oxygen.

- Molecular mass of $O_2 = 32$
- Number of moles = 64 / 32 = 2 moles
- Molecules = $2 \times 6.022 \times 10^{23} = 1.2044 \times 10^{24}$ molecules

- (b) Calculate the mass of Nitrogen having the same volume as that of 64 g of Oxygen.
 - 64 g of O_2 = 2 moles = 2 × 22.4 L = 44.8 L (at STP)
 - $44.8 \text{ L of } N_2 = 2 \text{ moles (since 1 mole = 22.4 L)}$
 - Mass of $N_2 = 2 \times 28 = 56 g$
 - 8. 8. Two reactions related to extraction of metals are given. Identify calcination and roasting.
 - (a) Cu₂S ore is converted to Cu₂O by heating.

This is **Roasting** (as it involves heating of sulphide ore in presence of oxygen).

(b) Carbonates and hydroxides of metals decompose to form their oxides.

This is **Calcination** (as it involves heating in absence of air).

- 9. 9. Identify A and B.
 - (a) CH₃OH + CO →(catalyst)→ (A)

This forms CH₃COOH (Acetic acid)

A = CH₃COOH

(b) $CHCl_3 + Cl_2 \rightarrow (B) + HCl$

This forms CCl₄ (Carbon tetrachloride)

 $B = CCl_4$

- 10.10. The chemical formula of a compound is C_2H_6O .
 - (a) Write the structural formula of any one of the functional isomers.

Two functional isomers:

Ethanol: CH₃-CH₂-OH

Dimethyl ether: CH₃-O-CH₃

(b) Write the IUPAC name of this functional isomer.

If ethanol: Ethanol

If dimethyl ether: Methoxymethane

11. Copper is electroplated on an iron bangle.

- (a) Which electrolyte is used here? Copper sulphate (CuSO₄) solution
- (b) Write any one of the advantages of electroplating.

 Improves appearance / Prevents corrosion / Increases durability
- (c) Does the intensity of colour of electrolyte change during this process? Why?

Yes, the intensity decreases because Cu²⁺ ions are deposited on the iron and their concentration in the solution reduces.

- 12. Subshell electronic configuration of element 'A' is given.
 - (i) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$
 - (ii) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
 - (a) Which is the correct subshell electronic configuration? Why?
 - (ii) is correct

Because 4s orbital is filled before 3d orbital.

(b) Identify the block in the periodic table to which this element belongs.

Ends in $4s^2 \rightarrow s$ -block

- 13. Two reversible reactions are given:
 - (I) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g) + Heat$
 - (II) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + Heat$
 - (a) Identify the reaction in which pressure has no effect.

Reaction I (equal number of moles of gas on both sides \rightarrow pressure has no effect)

- (b) How do the following factors influence the amount of product in Reaction II?
- (i) Increase the temperature

Decreases the amount of SO₃ (forward reaction is exothermic, heat opposes forward direction)

(ii) Increase the pressure

Increases the amount of SO₃ (forward reaction has fewer gas molecules)

- 14. (a) Which types of reactions are these?
 - (i) Addition reaction
 - (ii) Polymerisation reaction
 - (b) Identify the product in the reaction (ii) and write any one use of it.

Product: Polyvinyl chloride (PVC)

Use: Used in making pipes, wires, cables, synthetic leather, etc.

15. Volume and number of molecules of gases at 27°C and 2 atm:

Gas	Volume (L)	Number of molecules
Nitrogen	10	х
Carbon dioxide	(i) 20	2x
Oxygen	5	(ii) 0.5x

(a) Complete the table.

Use Avogadro's Law: Equal volumes of gases at same temp & pressure have equal number of molecules.

If 10 L = x molecules,

Then:

 $CO_2 = 20 L \rightarrow 2x$ molecules

 $O_2 = 5 L \rightarrow 0.5x$ molecules

(b) What will be the volume of carbon dioxide gas if pressure is increased to 4 atm?

At constant T and n, $P_1V_1 = P_2V_2$

 $P_1 = 2 atm, V_1 = 20 L$

 $P_2 = 4$ atm

 $V_2 = (P_1 \times V_1) / P_2 = (2 \times 20) / 4 = 10 L$

16. Manganese (Mn) is an element that belongs to d block in the periodic table.

(a) Outer subshell electronic configuration of Mn is 3d54s23d54s2. Find the atomic number of Manganese.

Answer: Atomic number = 25

(b) Find the oxidation state of Mn in Mn₂O₇.

Answer: +7

(c) Write period number and group number of Manganese.

Answer: Period = 4, Group = 7

(d) Write the subshell electronic configuration of Mn⁴⁺ ion.

Answer:

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$$

- 17.A few drops of the solution 'X' is added to Magnesium sulphate solution taken in a test tube. A white precipitate is formed.
 - (a) What is 'X'?

Answer: Sodium hydroxide (NaOH)

(b) What is the chemical name of white precipitate formed here?

Answer: Magnesium hydroxide (Mg(OH)₂)

(c) What happens to the white precipitate when dilute hydrochloric acid is added?

Answer: It dissolves to form a clear solution.

(d) Which type of salt is identified by this experiment?

Answer: Magnesium sulphate (MgSO₄)

- 18. Three metals Ag, Mg, Cu and their salt solutions are given.
 - (a) How many galvanic cells can be constructed using these metals? From 3 metals, possible pairs = 3C2 = 3 galvanic cells
 - (b) If we construct a galvanic cell using the most reactive metal and the least reactive metal from the given metals, identify the cathode and anode.

Reactivity order: Mg > Cu > Ag

Anode = Mg (most reactive → oxidized)

Cathode = Ag (least reactive → reduced)

(c) Write the chemical equation of the reaction which takes place at anode and cathode in the above cell.

At Anode (Mg):

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

At Cathode (Ag):

$$Ag^+ + e^- \rightarrow Ag$$

(But since two electrons come from Mg, it would be: $2Ag^+ + 2e^- \rightarrow 2Ag$)

Overall cell reaction:

$$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$$

19.(a) Write the name and chemical formula of ore of iron used in industrial production.

Name: **Haematite** Formula: **Fe₂O₃**

(b) Write the chemical equation of slag formation in the industrial production of iron.

$$CaO + SiO_2 \rightarrow CaSiO_3$$
 (slag)

- (c) Which mineral of iron is known as fool's gold? Iron pyrite or FeS₂
- (d) Write the names of two alloy steels which contain the same constituent elements.

Stainless steel and **Tungsten steel** (both contain Fe, C, and other metals like Cr, W, etc.)

20.

A (Structure)	B (Molecular Formula)	C (Name)
1. CH ₃ -CH-CH-CH ₃ (CH ₃ on both C2 and C3)	C ₆ H ₁₄	2,3-Dimethylbutane
2. CH₃–CH=CH ₃	C ₄ H ₈	But-2-ene
3. CH₃–CH(OH)–CH₃	C₃H ₈ O	Propan-2-ol
4. CH ₃ –CH ₂ –CH ₂ –CH ₂ –COOH	C ₅ H ₁₀ O ₂	Pentanoic acid